Inequalities

MARIUS GHERGU School of Mathematics and Statistics University College Dublin

Basic Principle of Inequalities: For any real number x , we have

$$
x^2 \geq 0
$$
, with equality if and only if $x = 0$.

Example. For any two positive real numbers x and y , we have $(x-y)^2\geq 0$, and so $x^2+y^2-2xy\geq 0.$ Writing this as

$$
x^2 + y^2 + 2xy \ge 4xy,
$$

we get

$$
\left(\frac{x+y}{2}\right)^2 \geq xy.
$$

Taking the square root of both sides yields

$$
\frac{x+y}{2} \ge \sqrt{xy} \ .
$$

where by convention, $\sqrt{\cdot}$ denotes the *positive* square root. This inequality has a special name.

The Arithmetic Mean – Geometric Mean (AM-GM) Inequality:

For any two positive real numbers x and y , we have

$$
\frac{x+y}{2} \ge \sqrt{xy}
$$

with equality if and only if $x = y$.

The quantity of the LHS is called the *arithmetic mean* of the two numbers x and y. The quantity of the LHS is called the geometric mean of the two numbers x and y. They can be regarded as providing two different ways of "averaging" a pair of numbers.

Remark: This result has the following interpretations:

- The minimum value of the sum of two positive quantities whose *product* is fixed occurs when both are equal.
- The *maximum* value of the *product* of two positive quantities whose *sum* is fixed occurs when both are equal.
- A geometric interpretation of this result is that in any rightangled triangle, the median corresponding to the hypotenuse is bigger than the altitude corresponding to hypothenuse.

Example. Find the minimum of $x + \frac{5}{x}$ $\frac{5}{x}$, where x is positive.

Solution. By the AM-GM inequality,

$$
x + \frac{5}{x} \ge 2\sqrt{(x) \cdot \left(\frac{5}{x}\right)}
$$

$$
= 2\sqrt{5}.
$$

The minimum occurs when $x=\frac{5}{x}$ $\frac{5}{x}$, i.e., when $x =$ √ 5. **Example.** Prove that for any positive numbers a, b and c we have

$$
(a+b)(b+c)(c+a) \ge 8abc.
$$

Solution. By the AM-GM inequality we have

$$
\frac{a+b}{2} \ge \sqrt{ab}, \quad \frac{b+c}{2} \ge \sqrt{bc}, \quad \frac{c+a}{2} \ge \sqrt{ca}
$$

If we multiply these three inequalities we find

$$
\frac{(a+b)(b+c)(c+a)}{8} \ge \sqrt{(ab)(bc)(ca)} = abc
$$

and this finishes our proof.

The Arithmetic Mean – Geometric Mean (AM-GM) Inequality (more than two variables):

Suppose we have *n* positive real numbers x_1, x_2, \ldots, x_n . Then

$$
\frac{x_1 + x_2 + \dots + x_n}{n} \ge (x_1 x_2 \cdots x_n)^{\frac{1}{n}}
$$

with equality if and only if all of the numbers x_1, x_2, \ldots, x_n are equal.

Remark: This result has the following interpretations:

- The *minimum* value of the *sum* of positive quantities whose product is fixed occurs when all are equal.
- The *maximum* value of the *product* of positive quantities whose *sum* is fixed occurs when all are equal.

Example.

Minimize $x^2 + y^2 + z^2$ subject to $x, y, z > 0$ and $xyz = 1$.

Solution. By AM-GM,

$$
x^{2} + y^{2} + z^{2} \ge 3\sqrt[3]{x^{2} \cdot y^{2} \cdot z^{2}}
$$

= $\sqrt[3]{(xyz)^{2}}$
= 1.

The minimum occurs when $x^2 = y^2 = z^2$, i.e., when $x = y = z = 1$.

Example.

Minimize $\frac{6x}{y} + \frac{12y}{z} + \frac{3z}{x}$ $\frac{3z}{x}$ for $x, y, z > 0$.

Solution. By AM-GM,

 $6x$ \hat{y} $+$ 12y z $+$ $3z$ \overline{x} $\geq 3\sqrt[3]{\frac{6x}{x}}$ \hat{y} · 12y z · $3z$ \mathcal{X} $= 3\sqrt[3]{6 \cdot 12 \cdot 3} = 3 \cdot 6 = 18$. The minimum occurs if and only if $\frac{6x}{y} = \frac{12y}{z} = \frac{3z}{x}$ $\frac{3z}{x}$, i.e., if and only if $x = t$, $y = t$ and $z = 2t$ for some positive number t.

Example.

Maximize $xy (72 - 3x - 4y)$, where $x, y > 0$ and $3x + 4y < 72$.

Solution. We seek to maximize the product of three positive quantities. Note that the sum of the three quantities is equal to

$$
x + y + (72 - 3x - 4y) = 72 - 2x - 3y.
$$

This is NOT a constant! However, we can rearrange the product as

$$
\frac{1}{12}(3x)(4y)(72 - 3x - 4y)
$$

Thus by AM-GM, the maximum occurs when $3x = 4y = 72 - 3x - 1$ 4y, i.e., when $3x = 72 - 6x$. This yields $9x = 72$, or $x = 8$. Thus $y = 6$ and the maximum value is $\frac{1}{12} \cdot (24)^3 = 1152$.

Example.

Let a be a positive constant. Minimize $x^2 + \frac{a}{x}$ $\frac{a}{x}$, where $x > 0$.

Solution. We seek to minimize the sum of two quantities. Note that the product of the two quantities is equal to $ax -$ this is NOT a constant. However, we can rearrange the sum as

$$
x^2 + \frac{a}{2x} + \frac{a}{2x} \; .
$$

Thus using AM-GM,

$$
x^{2} + \frac{a}{2x} + \frac{a}{2x} \ge 3\sqrt[3]{x^{2} \cdot \frac{a}{2x} \cdot \frac{a}{2x}} = 3\sqrt[3]{\frac{a^{2}}{4}} = 3\left(\frac{a}{2}\right)^{\frac{3}{2}}
$$

The minimum occurs when $x^2 = \frac{a}{2x} = \frac{a}{2x}$ $\frac{a}{2x}$, i.e. when $x = \sqrt[3]{\frac{a}{2}}$.

.

Two More "Averages":

The **Harmonic Mean** of n numbers x_1, x_2, \ldots, x_n is given by

$$
HM = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}
$$

and their **Root-Mean-Square** is given by

RMS =
$$
\sqrt{\frac{x_1^2 + x_2^2 + \dots + x_n^2}{n}}
$$
.

If all the numbers x_1, x_2, \ldots, x_n are positive, then we have

 $\min\{x_1, \ldots, x_n\} \leq \text{HM} \leq \text{GM} \leq \text{AM} \leq \text{RMS} \leq \max\{x_1, \ldots, x_n\}$ with equality in each case if and only if all of the numbers x_1, x_2, \ldots, x_n are equal.

Special case: for two positive numbers x and y

 $\min\{x, y\} \leq \frac{2xy}{y}$ $\bar{x}+\bar{y}$ ≤ √ $\overline{xy} \leq$ $x + y$ 2 ≤ $\sqrt{x^2+y^2}$ 2 \leq max $\{x,y\}$.

Exercise: Prove the above special case (all inequalities)!

Looking at the AM-HM inequality, we have AM \geq HM, or

$$
\frac{x_1 + x_2 + \dots + x_n}{n} \ge \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}
$$

This can be rearranged into the form

$$
(x_1 + x_2 + \cdots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n} \right) \ge n^2
$$
,

with equality if and only if the numbers x_1, x_2, \ldots, x_n are all equal.

Example: "Nesbitt's Inequality".

Prove that for positive numbers a, b, c ,

$$
\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2} .
$$

Solution. Write the LHS as

$$
\frac{a+b+c}{b+c} + \frac{a+b+c}{a+c} + \frac{a+b+c}{a+b} - 3
$$

= $(a+b+c) \left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b} \right) - 3$
= $\frac{1}{2} [(a+b) + (b+c) + (a+c)] \left[\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b} \right] - 3$
 $\geq \frac{1}{2}(9) - 3 = \frac{3}{2}$

where we have used the HM-AM inequality with $n = 3$:

$$
(x + y + z) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \ge 3^2
$$

with $x = a + b$, $y = b + c$, $z = a + c$.

Sometimes we can be asked to prove an inequality regarding the sides lengths of a triangle. Here, the side lengths a, b, c (aside from being positive) must satisfy the so-called *triangle inequalities*:

$$
a + b > c
$$
; $b + c > a$; $c + a > b$;

Example.

Let a, b, c be the side lengths of a triangle. Prove that

$$
a^2 + b^2 + c^2 < 2(ab + bc + ca).
$$

Solution.

Note that for example, if $a = 5$ and $b = c = 1$, we have

$$
a^2 + b^2 + c^2 = 27 \; ; \quad 2(ab + bc + ca) = 22.
$$

and the result does not hold. Therefore, it is important that we use the information that a, b, c satisfy the triangle inequalities.

Writing the triangle inequality $a + b > c$ as $c - b < a$ and squaring, we obtain $(c-b)^2\,<\,a^2.$ Doing this for each triangle inequality yields

$$
(c - b)2 < a2
$$

$$
(a - b)2 < c2
$$

$$
(c - a)2 < b2
$$

Adding these three inequalities, and simplifying, yields the result (Exercise: check this!).

Exercises.

(1) Let $x, y > 0$. Find the minimum of

$$
\frac{50}{x} + \frac{20}{y} + xy.
$$

(2) If $x > y > 0$, find the minimum of

$$
x + \frac{8}{y(x - y)}.
$$

(3) Prove that for any positive real numbers a, b, c we have

$$
(a+9b)(b+9c)(c+9a) \ge 216abc.
$$

(4) Prove that for positive real numbers x, y, z ,

$$
x^2 + y^2 + z^2 \ge xy + yz + zx,
$$

and determine when equality occurs.

- (5) Find the positive number whose square exceeds its cube by the greatest amount.
- (6) Prove that for positive real numbers x, y, z ,

$$
\frac{1}{x+y} + \frac{1}{y+z} + \frac{1}{z+x} \le \frac{1}{2} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right).
$$

(7) The sum of a number of positive integers is 2016. Determine the maximum value their product could have.

For further reading, click here: [Wikipedia entry on AM-GM](http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means)